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Abstract. The anomalous behaviour of the Avrami exponents found in the primary
crystallization of amorphous alloys leading to nanostructured materials is considered. A kinetic
model able to adequately treat such phase transformation has been formulated by means of the
implementation of a soft-impingement diffusion mechanism after a transient interface controlled
growth. A decrease in the nucleation rate as crystallization proceeds has also been considered.
Comparison of the model with experimental data is performed, giving excellent agreement. The
soft-impingement diffusion mechanism is demonstrated to be responsible for the anomalous
behaviour of the Avrami exponent, the decreasing nucleation rate being a second-order effect.

1. Introduction

Experimental data on kinetics of primary crystallization often deviate from the theory
of Kolmogorov–Johnson–Mehl–Avrami (KJMA) [1–3], specially in the late stages of
crystallization. However, statistical considerations underlying KJMA may be applicable
to this situation, and the challenge is to find suitable models for the nucleation and growth
rates in order to obtain an adequate description of the experimental data.

One of the parameters commonly evaluated for analysing experimental data which
follow KJMA kinetics is the well known Avrami exponent, which is used as a tracer
of the mechanisms underlying the transformation. Dependence of nucleation and growth
rates on temperature and time are both responsible for the Avrami exponent determined,
and, although experimental procedures provide some knowledge of these dependencies, the
same values of the Avrami exponents may be obtained as a result of different mechanisms.
Usually, several externally controlled thermal conditions are used in order to obtain overall
information on the microstructural development through the evaluation of the crystalline
fraction evolution or the Avrami exponent. Therefore, an adequate theoretical description is
necessary to fit the time evolution of the crystalline fraction,x(t), and to obtain an adequate
interpretation of the values of the Avrami exponent,n(t).

One of the situations where the misfit between KJMA and experimental data is observed
is the primary crystallization of amorphous alloys. Evaluation of Avrami exponents from
x(t) in such processes usually results in abnormally low values, which have given rise to
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some controversy and confusion in the literature [4–8]. Recently, experimental data on
the crystalline fraction evolution of BCC Fe(Si) with a DO3 structure precipitation in a
FINEMET alloy has been modelled by considering homogeneous nucleation and interface
plus diffusion controlled grain growth with interference of the diffusion profiles between
neighbour grains [9, 10], giving an excellent agreement with experimental data.

The main feature of the model is the introduction of a microstructural dependence
of the grain growth, as a consequence of grain interaction typical of partitioning
transformations where the precipitate has a different composition from the matrix in which
it develops. Normally, partitioning transformations result in the presence of gradients of
the concentrations of several solutes at the edge of the grains, the growth rate being limited
by the slowest-diffusing specimen [11]. However, as crystallization proceeds the diffusion
profiles of neighbour grains begin to overlap to an appreciable extent (soft impingement),
giving rise to a further decrease in the growth rate because of the reduction in the
concentration gradient [9]. Therefore, the model referred to may adequately treat the growth
problem limited by soft impingement in primary crystallizations. However, a decreasing
nucleation rate should also be expected in such transformations, since the composition of the
matrix changes as crystallization proceeds, resulting in a remaining amorphous phase stable
versus crystallization. Therefore, the effect of decreasing nucleation rates should also be
considered and compared with the effect of the growing mechanism in the resulting kinetics.

In this paper the Avrami exponent is calculated with the model of growth referred
to above for a primary crystallization.The effect of introducing the interference of the
already developed microstructure on the grain growth is shown. Moreover, the effect of
the decrease in the nucleation rate expected in such transformations is also considered. The
relative importance of the decrease of the growth rate and of the nucleation rate during the
transformation is discussed by comparison with experimental data, and their implications
on the determined values of the Avrami exponent are discussed.

2. Evaluation of Avrami exponents

The kinetics of first-order phase transitions driven by nucleation and growth kinetics is
statistically described by the KJMA theory. The Avrami equation relates the evolution of
crystallized fractionx(T , t) to the extended crystallized fractioñx(T , t) by

dx(T , t)

1− x(T , t) = dx̃(T , t) (1)

whereT accounts not only for the temperature but also for any other external variables
characterizing the process, andt is time. Therefore, the transformed volume fraction may
be evaluated as

x(T , t) = 1− exp(−x̃(T , t)). (2)

The extended volume fraction may easily be calculated from the kinetic parameters as

x̃(T , t) =
∫ t

0
I (T , τ )V (T , τ, t)dτ =

∫ t

0
I (T , τ )fd [r(T , τ, t)]d dτ (3)

whereI is the nucleation rate,V (T , τ, t) is, at timet , thed-dimensional volume of a grain
born at timeτ , and consequentlyr(T , τ, t) is its radius andfd is thed-dimensional form
factor.

The Avrami exponent is defined from the slope of ln(x̃(T , t)) versus ln(t),

n(T , t) = d[ln(−(ln(1− x(T , t))))]
d[ln(t)]

= d[ln(x̃(T , t))]

d[ln(t)]
(4)
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and it is evaluated only in the case of isothermal crystallizations; therefore,T becomes a
fixed parameter.

The radiusr(T , τ, t) is obtained by integration of the growth rateG(T , t). Then, for
instance, for a constant nucleation and any radius dependent grain growth,G(T , r(τ, t)),
the radius has the formr(T , τ, t) = G0(T )(t − τ)q , and the extended transformed fraction
and the Avrami exponent become, respectively,

x̃(T , t) = 1

(qd + 1)
I0fdG

d
0t
qd+1

n = qd + 1. (5)

If the time dependence is the same during the whole crystallization process, that is
to say, if there is no change in the mechanism of transformation, the Avrami exponent
should be constant throughout the whole process. The case of increasing and decreasing
nucleation rates may also be considered, taking, for instance,I (T , τ ) = I0(T )τ

p and
I (T , τ ) = I0(T )(a + τ)−p respectively. In that case the Avrami exponents are not
constant but continuously increase or decrease, and give at the end of the transformation
n(t →∞)→ p+ qd + 1 for the case of increasing nucleation rates, andn(t →∞)→ qd

for the case of decreasing nucleation rates. This is a general result for any kind of
time dependency of the nucleation rate [12]. As a consequence, decreasing or increasing
nucleation rates are often considered to be responsible for non-constant Avrami exponents.

In the case of interface controlled growth the growth rate is constant and the Avrami
exponent becomes equal tod + 1, namely 4 for three-dimensional growth (with constant
nucleation rate), 3 for two-dimensional growth and so on.

For diffusion controlled growth rate, when steady state conditions are reached we have
[11]

G(T , r) = dr

dt
= D0(T )

r
(6)

which can be integrated obtaining

r(t, τ ) = 2[D0(T )(t − τ)]1/2 (7)

thus leading to a value of 1+ d/2 for the Avrami exponent (with constant nucleation rate),
and in particular 5/2 for the three-dimensional growth. Moreover, in the case of primary
transformations where a three-dimensional diffusion controlled growth rate is expected, the
minimum value expected even for decreasing nucleation rates isqd = 3/2.

Finally, for the case of a decreasing growth rate with constant nucleation rate, the
minimum value expected for the Avrami exponent is 1. Values of the Avrami exponent
below this figure are thus classically attributed to both decreasing nucleation and growth
rates.

3. Diffusion controlled grain growth in a primary crystallization

The above discussion is very fruitful for understanding complex crystallization processes. To
illustrate this we will now focus the discussion on the nanocrystallization of a FINEMET
alloy. These materials have been extensively studied from several points of view: their
good soft magnetic properties [13], the effect of alloy composition on their properties [14],
kinetics of crystallization [6, 7, 9, 10, 15, 16] and crystalline and amorphous characterization
[4, 16–18]. In particular we will analyse the isothermal nanocrystalline precipitation of a
BCC (Fe78Si22) phase, with a DO3 defective in Si superstructure, in a FINEMET material
of composition Fe73.5Si17.5CuNb3B5. Careful kinetic analysis by differential scanning
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calorimetry (DSC) and M̈ossbauer spectroscopy (MS) [16] has demonstrated that the
isothermal crystallization process of FINEMET materials shows a two-step process: a first
process, which is not related to crystalline precipitates but rather to a change in the short-
range order of the amorphous phase associated to an enhancement of the hyperfine magnetic
interaction (Cu is separated from the amorphous matrix forming clusters); and a second
process which corresponds to the primary precipitation itself. These two processes may be
detected by DSC analysis under isothermal or continuous heating conditions. Figure 1(a)
shows the isothermal calorimetric signal, which is formed by the addition of two signals
corresponding to the two processes already mentioned, the first process shown in figure 1(b)
and the second process shown in figure 1(c). This two-step process is also observed
under continuous-heating conditions, where the first process appears as a broad peak at
lower temperatures than the primary precipitation and may be eliminated by a first thermal
treatment at temperatures of about 430◦C [18].

Figure 1. (a) Isothermal DSC signal at 763 K corresponding to Fe73.5Si17.7CuNb3B5; the
two-step process is formed by a continuous decaying signal (b) and crystallization peak (c).

The analysis of the isothermal data in order to obtain the transformed fraction and the
Avrami exponent will be performed on the isothermal calorimetric signal after elimination of
the first process. Therefore, the effect of Cu clustering will be eliminated from the analysis of
the nanocrystalline precipitation. Moreover, a diffusion controlled growth will dominate the
transformation as the primary phase has a different composition from the amorphous phase.
The chosen FINEMET composition has the advantage that the nanocrystalline precipitate
has an Fe/Si ratio very close to the one corresponding to the original amorphous alloy
and which, under isothermal conditions, does not change as crystallization proceeds [16].
In that case, mostly Nb will diffuse out of the nanocrystalline phase. Other FINEMET
compositions poorer in Si will show a more complicated behaviour [18].

Figure 2(a) shows the comparison of the experimentally determined transformed fraction
with the computed values, considering constant nucleation and either interface or diffusion
controlled growth, according to [9] and [10]. Figure 2(b) shows the experimentally
determined Avrami exponents compared to the computed values for both kinetics. The
experimental Avrami exponents appear to be close to 4 at the beginning of the transition,
and further decrease below the values predicted for a diffusion controlled transition. A
common explanation associates this behaviour with a decreasing nucleation rate during the
transformation. A decreasing nucleation rate is expected because in a primary transformation
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the change of the composition of the amorphous matrix results in a change of the
thermodynamic factors which favour the initial nucleus precipitation. In order to take
this effect into account the first mean-field approximation is to suppose a linear decreasing
nucleation rate asI (T , τ ) = I0(T )(1 − x(τ)) [10]. Figure 2 also shows the result of
introducing the linear decreasing nucleation rate to the diffusion controlled grain growth
expected in a such transformation. None of these models seems able to explain the
experimental behaviour. We will demonstrate that the consideration of a diffusion controlled
growth with soft impingement will explain the behaviour of the Avrami exponents and the
transformation curves without introducing a decreasing nucleation rate. Furthermore, the
introduction of a decreasing nucleation will result in a second-order effect.

Figure 2. (a) Experimental transformed fraction versus time and (b) experimentally determined
Avrami exponents versus crystallization fraction compared to computed interface controlled
(dashed line) and diffusion controlled (solid line) growth.

The first consideration that should be made is that equation (6) describes the diffusion
controlled growth rate of the grain after steady conditions have been achieved, thus
neglecting the initial stage leading to the steady state regime. In a simplified view, one
can consider that nuclei are formed by fluctuations in the disordered phase and, at the
initial stage of growth, the species rejected from the crystalline phase will pile up ahead
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Figure 3. Sketch of the evolution of the concentration of the diffusion species as the
transformation advances. (a) Transient growth process. (b) Diffusion controlled growth under
steady state conditions. (c) End of transformation whilec→ c∗.

of the interface until metastable local equilibrium is reached, as shown in figure 3(a), (b).
There are several effects which determine the value of the initial growth rate, such as the
critical size of the nuclei,r∗, the Gibbs–Thompson effect, the balance between interface
and diffusion until diffusion becomes the limiting mechanism etc. However, since we are
using a mean-field theory to analyse the overall transformation, in our simplified model
we will consider that growth is interface controlled until a threshold radius,rT , is attained.
Therefore, in order to describe the growth habit more accurately, the growth rate is taken
as

dr

dt
=

u(T ) r 6 rT
D(T )

r

C∗ − C
C∗ − Cxt r > rT

(8)

whereCxt , C∗ and C are respectively the concentrations of the slowest-moving species
inside the grain, at the grain boundary and far from the grain (see figure 3). The
diffusion controlled growth rate corresponds to an isolated grain with spherical symmetry,
according to [11], andD(T ) accounts for a diffusion coefficient given byD(T ) =
D∞ e−(ED/kT ). The value ofrT is obtained by imposing continuity in radius size, giving
rT = (D(T )/u(T ))(C∗ − C/C∗ − Cxt ) − r∗. This approach will produce a discontinuous
growth rate transition atrT , but it does not seriously affect the results [9] and is easily
introduced in the calculation.

Equation (8) means that the growth rate of an isolated grain depends on the concentration
value far from the grain. As a first approximation, we can ignore the effect of the rest of
the growing grains on this value, and thus takeC = C0, the concentration of the diffusing
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element in the matrix att = 0 (see figure 3(b)). This first approximation is usually known
as diffusion controlled growth withhard impingement.

The validity of this approximation essentially depends on the differenceC∗ −C. If this
difference is large, the excess (or defect) of the species in the untransformed phase will
affect the growth rate very little. However, the presence of solute in the matrix due to the
growth of neighbour grains will reduce this difference and, at the end of the transformation,
it is likely thatC∗−C → 0. This fact is also sketched in figure 3, where the reduction in the
concentration gradient at the grain boundary is shown. Then, as a second approximation,
we can consider the variation inC while the transformation proceeds, an approximation
known assoft-impingement diffusion.

The determination ofC in (8) is obtained by considering the average mean value of the
concentration of solute in the remaining matrix, which can be evaluated by writing a mass
balance

γ x(t)Cxt + (1− γ x(t))C = C0 (9)

where γ accounts for the crystallized fraction at the end of the primary crystallization
(x = 1). Imposing thatC(t →∞)→ C∗, expression (9) becomes the level rule, namely,

γ

1− γ =
C∗ − C0

C0− Cxt . (10)

Finally, substituting (9) and (10) into (8) we obtain

dr

dt
=

u(T ) r 6 rT
D0(T )

r
ϕ(x(t)) r > rT

(11)

whereD0(T ) = D(T )(C∗ − C0)/(C
∗ − Cxt ) = γD(T ) and −ϕ(x(t)) = 1 for hard

impingement andϕ(x(t)) = [1 − x(t)]/[1 − γ x(t)] for soft impingement. Note that new
adjustable parameters are not introduced in the soft impingement approach ifγ can be
determined independently.

Finally, the change of the matrix composition along the transformation is also expected
to result in a change of the nucleation rate. In the nanocrystalline precipitation of the
FINEMET alloy the matrix enriches in Nb as transformation proceeds. Nb is a well
known stabilizer of the amorphous phase, and therefore a reduction of the nucleation rate
should be expected. As a first mean-field approximation, the reduction may be taken as
I (T , τ ) = I0(T )(1− x(τ)) [10].

We will apply this model also to the FINEMET—Fe73.5Si17.5CuNb3B5—
nanocrystallization of a BCC (Fe78Si22) primary phase, where M̈ossbauer measurements
show that the transformed fraction at the end of the primary crystallization is about 60%
[16], which gives a value ofγ = 0.6.

Figures 4(a) and 5(a) show the experimentally measured transformed fraction versus time
compared with the interface plus diffusion controlled growth by hard or soft impingement
and constant or decreasing nucleation rates. One can see that both approaches describe
the beginning of the transformation quite accurately. However, experimental data delay
noticeably from the hard-impingement model after the crystallized fraction reaches about
50%. Moreover, the decreasing nucleation rates for both growing process produce an extra
delay of the transformed fraction. However, the effect is much smaller than the soft-
impingement consideration, and in itself is not able to explain the experimental behaviour.
Agreement between the soft-impingement approximation and experimental data is excellent,
always allowing for the uncertainty of the experimental data.
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Figure 4. (a) Transformed fraction versus time and (b) Avrami exponent versus crystallized
fraction. Comparison of experimental data with computed values in the hard-impingement
diffusion approximation with constant (dashed line) and decreasing (solid line) nucleation rates.

Avrami exponents give an alternative view of this agreement. Figures 4(b) and 5(b)
show the experimentally determined Avrami exponents compared to the computed values
for the hard or soft impingement and constant or decreasing nucleation rates. Remembering
that the beginning of the grain growth is interface controlled in both cases, it is possible to
understand the present agreement between experimental and computed values at early stages
of crystallization. However, in the hard-impingement model the Avrami exponent tends to
a final value of 5/2, as predicted theoretically in a diffusion controlled growth process, far
from the experimentally determined values. On the other hand, the soft-impingement model
follows the evolution of the experimental data more closely, the reduction in the diffusion
gradient being responsible for the low values of the Avrami exponent observed at the end
of the transformation.

These final values show a surprising behaviour, namely they go below 1. This result
was previously obtained in the literature, and the usual explanation was that the nucleation
rate decreased at late stages of the transition [4, 6, 19]. We see in the analysed case that a
decreasing nucleation rate produces an extra decrease of the Avrami exponents, but this in
itself is not able to explain the general behaviour of the data (figure 5). In our model we
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Figure 5. (a) Transformed fraction versus time and (b) Avrami exponent versus crystallized
fraction. Comparison of experimental data with computed values in the soft-impingement
diffusion approximation with constant (dashed line) and decreasing (solid line) nucleation rates.

have also considered constant nucleation rate, and the computed values go below 1. In fact,
considering the case where growth is stopped when the transformed fraction has reached a
value close to 1 and only nucleation remains, we can write the extended fraction at time
t +1t as a function ofx̃(t)

x̃(t + dt) = x̃(t)+ IVε1t (12)

whereVε is the volume of a nucleus. Thus evaluation of equation (5) gives

n(t +1t) ≈ IVεt

x̃(t)+ IVε1t ≈
IVεt

x̃(t)
(13)

becauseIVε1t is negligible with respect tõx(t). This leads to a shocking result, namely
that the classically expected value ofn = 1 can only be obtained if̃x(t) ≈ IVεt , which
means that the growth contribution to the extended fraction is negligible with respect to the
nucleation contributionthroughout the whole transformation. Otherwise, the assumption
that t →∞ is not applicable here becausex̃(t) is an infinity of higher order thanIVεt and
n� 1. This means that, contrary to common assumptions, even with a constant nucleation
rate the value of the Avrami exponent at the end of the transformation may go below 1.
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The above-mentioned result seems to contradict the classical definition of the Avrami
exponent asn(t →∞)→ qd + p + 1 or n(t →∞)→ qd for increasing and decreasing
nucleation rates, respectively. However, this shows that the classical interpretation of the
Avrami exponent is only appropriate if the driving mechanisms do not change over the whole
transformation; otherwise an adequate knowledge of the underlying kinetics is needed in
order to obtain proper conclusions from the study of the Avrami exponents.

Our results show that, provided 3D growth occurs, the effect of the nucleation and
the growth rate in the behaviour of the Avrami exponent is always of a different order
of magnitude. The Avrami exponent is always dominated by the growth rate, and the
nucleation rate is always a second-order perturbation. The only case where the nucleation
rate dominates the behaviour of the Avrami exponent is when the growth rate is negligible
during the whole transformation. Even for the particular case of the FINEMET primary
transformation, which has a very high nucleation rate, the growth rate is negligible only at
the very end of the transformation and therefore it dominates the local value of the Avrami
exponent along the transformation.

The results obtained for the FINEMET primary crystallization may also be compared
with the ones obtained in the literature. However, although performing continuous heating
experiments is a common tool, the special difficulty of obtaining isothermal calorimetric
curves means that there are very few papers with such analysis. Moreover, the Avrami
exponents have been obtained in very few cases [4–8]. A comparative study of alloys with
compositions Fe77.5Si13.5B9, Fe74.5Si13.5B9Nb3, Fe76.5Si13.5B9Cu and Fe74.5Si13.5B9Nb3Cu
has been performed by Zhouet al [5], in order to evaluate the effect of Cu and Nb
additions to the original Fe–Si–B alloy. In general terms, two types of isothermal curve
are obtained, mainly symmetric and asymmetric with long tails, as shown in figure 6. The
long tails of the asymmetric curves are related to a diffusion controlled growth and appear
for the alloys Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu and Fe74.5Si13.5B9Nb3Cu, and the symmetric
curve typical of interface controlled growth for the alloy Fe74.5Si13.5B9Nb3. This seems
to contradict our assumption that Nb is responsible for the diffusion controlled process.
However, the data have to be considered carefully: for Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu and
Fe74.5Si13.5B9Nb3Cu there is a primary crystallization, while in the case of Fe74.5Si13.5B9Nb3

alloy a eutectic crystallization is obtained. The diffusion controlled grain growth is only
obtained as a result of a primary precipitation, while in the case of the eutectic crystallization
the growth rate is interface controlled. The fact that even without containing Nb the curves
show the typical asymmetric behaviour must be attributed in this case to the fact that the
original composition of the alloy is poorer in Si (13.5 at.% Si) than our FINEMET (17.5 at.%
Si), and considering that for these alloys the BCC phase formed has also a Si content of
about 20 at.% [4, 13], Fe also has to diffuse.

Figure 6. Isothermal calorimetric curves obtained: (a) symmetric for interface controlled growth
and (b) asymmetric for diffusion controlled growth.
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Moreover, the beginning of the isothermal calorimetric curves has been cut in [5],
preventing the observation of the overlap of the calorimetric signal corresponding to
Cu clustering, and giving rise to misleading Avrami exponents at the beginning of the
transformation.

Therefore, the analysis of the Avrami exponents reported for those materials must take
into account the cut-off at the beginning of the transformation and the experimental error
of the calorimetric curves at the end of the transformation. Those considerations show that
the values obtained for the primary precipitations decrease continuously as crystallization
proceeds, and go below 5/2, while for the eutectic crystallization the Avrami exponent
remains more or less constant, and close to 4.

Other measurements of Avrami exponents in FINEMET alloys show in all cases
decreasing values as crystallization proceeds [8], and abnormally low values at the end
of the transformation (∼0.3 [4], ∼0.2 [6] and∼0.7 [7]). Those results agree with the
model of a diffusion controlled growth with soft-impingement.

4. Conclusions

The Avrami exponent has been used in the interpretation of experimental data corresponding
to the primary crystallization of an amorphous alloy. The implementation of a soft-
impingement diffusion mechanism after a transient interface controlled growth to explain
a primary crystallization enabled us to fit both the transformed fraction and the Avrami
exponent behaviour over the whole transformation. The consideration of decreasing
nucleation rates also has physical reasons. However, its effect in the kinetics is a second-
order effect compared with the growth mechanism, which has been demonstrated to be
chiefly responsible for the experimental behaviour.

The final values of the Avrami exponents, both experimental and computed even
with constant nucleation rate, go below 1, in contradiction to the usual hypothesis that
a decreasing nucleation rate is needed to understand this kind of behaviour. This result
shows that the Avrami exponents are always dominated by the growth rate behaviour, and
that the effect of the nucleation rate is a second-order effect.
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